At a glance

Seko equipment can be widely used in industrial process, water treatment, chemical and physical parameters monitoring.

Dosing systems for water treatment includes measure and control instruments and a wide range of accessories in addition to the dosing pumps. Our long experience let us develop specific products for the different applications of the various markets.

Seko control instruments products range allow the customer to measure many different parameters with a wide range of sensors and accessories.

Seko policy is to focus on a high technical level and innovative products. The modern design of the control instruments and their precision in measurements allowed Seko to became one of the most trusted company in this market. Highly precise measurements can be taken, even under difficult conditions.

All these characteristics allow Seko to keep offering its customers products that perfectly suits their tasks, and that represent a secure investment due to their high quality.

Index

Controllers

Controllers/sensors selection table	(3)
Controllers overview	(4)
Controller K100 series	(5)
Controller K50 series	(7)
Controller K800 series	9

Sensors

Sensors overview	(11)
pH/ORP measurement layout	(13)
pH electrodes SPH	(15)
ORP electrodes SRH	(15)
Conductivity measurement layout	(17)
Conductivity cells CTK, CK-PT, CTK-PT, CTK-G	(19)
Inductive conductivity cells S411/IND	(21)
Inductive conductivity cells S411/IND/HT	(22)
Chlorine measurement layout	(23)
Chlorine and other oxidants amperometric sensors	25)
Oxigen measurement layout	27
Oxigen and Temperature optical sensor S423/OPT	28)
Turbidity measurement layout	(29)
Turbidity sensor S461/T	(30)
Low Turbidity sensor S462/PVC	(30)
Flow rate measurement layout	(31)
Flow rate sensor SFW	(32)
Electromagnetic Flow rate sensor SFWE	(32)

Accessories

PSS-Plexi, PSS 3 holers and PSS-EC holders	33
PSS 8 and Power Supply	34
PT100 temperature sensor and Cable	35
Buffer solutions	36

Selection Table

		Control Instruments			Applications				S
	Ducha una dala				Waste Water	Swimming Pool	Drinking Water	Cooling Tower	Reverse Osmosis
Measurement	Probe models	Kontrol 50	Kontrol 100	Kontrol 800	>				<u> </u>
	SPH-1 5M SPH-3 WW	•	•	•		•	•		_
рН	SPH-3 WWW SPH-4 HP	•	•	•	•	•	•	•	•
	SPH-4 HT		•				•	•	
	SRH-1 5M				-				
ORP	SRH-3 PT					-			-
	SRH-4 HT-PT	-	-	-					
	С- К1 РТ								-
Electrical conductivity	C-TK 1; C-TK 5; C-TK 10			-					
	C-TK 1G	•	•	•					
	C-TK 0,1 PT ; C-TK 10 PT	•		-					
Inductive	S411 IND	•	•		•			•	
conductivity	S411 IND HT	•	•	-					
	Free Inorganic Chlorine	•		•	•	•	•	•	•
	Free Organic Chlorine	•							
Chlorine and disinfectants	Total Chlorine	•	•	-	•	•		•	
and disinfectants	Chlorine Dioxide	•	•	-	•	•	-	•	•
	Bromine, PAA, H2O2, O3	•	•	-	•	•		•	
Dissolved Oxigen	S 423 C OPT	•	•	•	•		•		
	S462 PVC	•		•		•		•	•
Turbidity	S461 T 40 NTU	•	•	-	•			•	
rubiarty	S461 T 400 NTU	•	•	-	•				
	S461 T 4000 NTU	•	•	•	•				
	PVC paddlewheel	•	•	•	•	•	•	•	•
Flow	AISI paddlewheel	•	-	-	•				•
	SFWE electromagnetic	•	•	•	•		•		
Temperature (*)	PT100	•	-	-	•	•	-	•	•

(*) only compensation

Overview of Control Instruments

Being the heart of the measurement loop made by sensor and dosing device, a controller must provide high accuracy, state-of-the-art technology and easy-to-use setting.

Single, double or multi-channel input together with relay, analog and digital outputs means we can monitor the

process and control pumps and valves in real time and in any application.

In conjunction with SEKO sensors and SEKO dosing equipment, the following controllers, developed in different classes, provide the most efficient management of any liquid media dosing application.

Single-parameter control instrument Kontrol 50

The new Seko K50 controller provides a single channel interface for the most common parameters in water treatment applications, plus an additional channel for PT100 temperature sensor.

Available in both universal and low power supply, as well as in panel and field mount, this controller is the perfect choice for any of your stand-alone application.

Thanks to its many output channels and its independent set points, SEKO K50 can drive up to 4 devices simultaneously.

It can be used for up to 7 different measured variables.

Single-parameter control instrument Kontrol 100

Including the same features of the K50 plus many additional others, the SEKO K100 controller is the ideal choice for the continuous measurement and control of parameters needed in waste water treatment analysis.

Its standard RS485 serial port makes this unit perfectly suitable for measuring network.

Four different backlight colours and six view levels provide the best legibility among all the controllers in its class.

Relay, Analog and Frequency outputs can drive up to 6 devices simultaneously. It can be used for up to 13 different measured variables.

Multi-parameter control instrument Kontrol 800

Multi-parameter controller designed to automate the monitoring of different parameters within a water treatment system.

SEKO advanced software and state-of-the-art technology ensures the most efficient control, at all times .

Thanks to a wide range of measured variables and to the SEKO patented modular probe holder, the K800 unit is easily configurable into the most flexible tailor made unit to perfectly fits any of your measurement needs.

Kontrol **100** Single-parameter control instrument

The Kontrol 100-series are advanced controllers designed for simpler high-end applications. The units feature an independent proportional control output, probe quality checking and a variety of outputs. The user has full programming authority.

Parameters

- pH / ORP
- Conductivity
- Flow Rate
- Dissolved Oxygen
- Chlorine
- Chlorine Dioxide
- Hydrogen Peroxide
- Ozone
- Peracetic Acid

Applications

- Waste Water
- Drinking Water
- Pure Water
- Cooling Towers
- Boiler
- Reverse Osmosis
- Crate Wash
- Galvanic Process
- CIP
- Irrigation
- Swimming Pool
- Dairy

Features

Graphic display and Keypad

128 by 128 pixel resolution monochrome display with graphic icons to show digital output status, washing cycle, alarms menu

Simultaneous flashing values for the measurement (numeric + bargraph) and temperature readings

Five control keys for instrument calibration and configuration

Enclosure Box and Power Supply

Wall mounting ABS plastic material IP65 (144x144)

Panel mounting ABS IP65 front panel only (96x96x42)

Universal Power Supply 100÷240 Vac 50/60 Hz

Low Power Supply 12÷32Vdc or 24 Vac CE compliant

Configuration Outputs

All outputs Relay, SSR and Output mA are configurable with primary and secondary measure.

Control 100

Measure range

Code	Description
рН	0÷14,00 pH
ORP	± 2000 mV
Conductivity	0,054÷20/200/2.000/20.000/200.000μS
Inductive Conductivity	0÷10.000 /10.000 /100.000 / 999.999 μS
Flow Rate	0 ÷ 99.999 Liters/Sec.
Dissolved Oxygen	0÷20,0 ppm or mg/l - 0÷200% SAT
Chlorine and Chlo. Dioxide	0÷0,50/1,00 /2,00 /5,00 /10,0 /20,0 / 200,0 ppm
Hydrogen Peroxide	0÷500 /1000 /2000 /10.000 / 100.000 ppm
Ozone (0 ₃)	0÷0,5 /2,00 /5,00 /10,00 ppm
Peracetic Acid	0÷500 /2000 /10.000 /20.000 ppm
Turbidity	0,0÷4,00 /40,0 /400 /4.000 NTU/FTU
Temperature	with PT100/PT1000 -50÷150°C (-58÷302 °F)

Product line Kontrol 100 Single parameter

Code	Code	Description	
K100PR	Kontrol PR 100	for pH or ORP values	
K100CD	Kontrol CD 100	for Conductivity values	
K100FX	Kontrol FX 100	for Flow Rate value	
K100MP	Kontrol MP 100	for Modular parameters	The unit's Software enables the following measures: $H_2O_2 - O_3 - CIO_2 - C_2H_4O_3$
			custom!!!

Multi-Color Backlight Function

Four different Backlight color to underline functions.

Control instruments

Current outputs 4÷20mA Galvanic isolation

Two independent programmable Output Measures with Proportional routine regulation.

Relay Outputs

Two independent relays, two set points, alarm remote and back washing probe setting by software. On/OFF, Timed routine function setting.

Solid State Relay (SSR)

Two Frequency output signal, two set points with Proportional routine regulation.

Service Maintenance Timer

One countdown timer to show a periodical maintenance service alarm.

Reverse Display function

Invert the writings on the display to obtain a high contrast.

Toolbar menu

The user-friendly programming step Menu by Toolbar functions.

Outputs Status bar

Quick information thanks to Status bar in real time.

Index menu

The user- friendly navigation thanks to index menu

Kontrol **50**

Single-parameter control instrument

The Kontrol 50-series are advanced controllers designed for simpler high-end applications. The units feature an independent proportional control output, probe quality checking and a variety of outputs. The user has full programming authority.

Parameters

- pH / ORP
- Conductivity
- Flow Rate
- Chlorine
- Per Acetic Acid
- Hydrogen Peroxide
- Custom Measure for 4÷20mA input

Applications

- Waste Water
- Drinking Water
- Pure Water
- Cooling Towers
- Boiler
- Reverse Osmosis
- Crate Wash
- Galvanic Process
- CIP
- Irrigation
- Swimming Pool
- Dairy

Features

Graphic display

128 by 128 pixel resolution monochrome high brilliance display with white backlight.

Graphic icons to show digital output status, washing cycle, alarms menu.

Simultaneous flashing values for the measurement and temperature readings.

Toolbar menu allows a series of views for the various menus, for programming and for viewing during operation.

Outputs Status bar to visualize information in real time.

Index menu allows a user- friendly navigation. Reverse function for invert the writings to obtain a high contrast.

Keypad

Five (5) control keys for instrument calibration and configuration.

Enclosure Box

Wall mounting

ABS plastic material IP65 full box (144x144).

Panel mounting ABS IP65 front panel only (96x96x42).

Control 50

Accessories

8

Measure range

Code	Description
рН	0÷14,00 pH
ORP	± 2000 mV
Conductivity	0,054÷20/200/2.000/20.000/200.000μS(*)
Flow Rate	0 ÷ 99.999 Liters/Sec. (**)
Input 4÷20mA (****)	0 ÷ 99.999 ppm (****)
Temperature	with PT100/PT1000 0÷100°C (32÷212 °F)

(*) Setting by software following unit : μ S, mS, K Ω , M Ω , ppm, ppb.

(**) Setting by software following unit : I/s, I/m, I/h, m⁻/h, GPIM. (***) Setting by software following unit measures: ppm, ppb, mg/l, mA or Custom

(****) Setting by software following measures: CL, PAA, H2O2 or Custom

Product line Kontrol 50 Single parameter

Code	Code		Description
K50PR	Kontrol F	PR 50	for pH or ORP values
K50CD	Kontrol C	CD 50	for Conductivity values
K50FX	Kontrol F	FX 50	for Flow Rate value
K50MP	Kontrol N	MP 50	for CL, PAA, H2O2 or custom

Solid State Relay (SSR)

Power Supply

Universal Power Supply 100÷240 Vac 50/60 Hz. Low Power Supply 12÷32Vdc or 24 Vac. CE compliant.

Configuration Outputs

secondary measure.

Current outputs

routine regulation.

Relay Outputs

setting.

All outputs Relay, SSR and Output mA

are configurable with primary and

4÷20mA Galvanic isolation One (1) independent programmable Output Measures with Proportional

One (1) Frequency output signal, two (2) set points with Proportional routine regulation.

Two (2) independent relays, two (2) set points, alarm remote and back washing probe setting by software. On/OFF, Timed routine function

control 800

9

Standard version

Kontrol 800

Multi-parameter control instrument

Graphic version

The Kontrol 800 is a dedicated multi-parameter controller for complex applications that require a number of chemical parameters to be checked at the same time. The unit features independent proportional control output measures, two programmable frequency outputs, RS 485 serial port with MODBUS protocol, three relais outputs, probe quality checking and Data logging capability.

Parameters

- pH / ORP
- Conductivity
- Chlorine
- Chlorine Dioxide

Applications

- Waste Water
- Drinking Water
- Cooling Towers
- Boiler
- Legionella disinfection
- Reverse Osmosis
- Sludge
- Crate Wash
- Galvanic Process
- Dioxide Station
- CIP
- Irrigation
- Swimming Pool
- Fish Farming
- Dairy

Features

Graphic display and Keypad

Simultaneous value of the measure, Temperature and Relay status.

4-line, 20-character Alphanumeric Display.

Seven control keys for instrument calibration and configuration.

Enclosure Box and Power Supply

Wall mounting ABS plastic material IP65.

Universal Power Supply 100÷240 Vac 50/60 Hz

Manual controls

The user-friendly programming step menu makes starting up and checking the control and dosing system easy.

Data logging

Internal Flash memory to load record measures values. Type: Circular (F.I.F.O.) or Filling.

Measure range

Code	De
рН	0÷
ORP	±ź
Conductivity	1÷
Chlorine (Amperometric Cell)	0÷
Chlorine and Chlo. Dioxide	0÷
(Potentiostatic Cell)	

(*): Amperometric Chlorine CU+PT sensors

Temperature

	0÷14,00 pH
	± 2000 mV
	1÷200/10÷2000/100÷ 20.000 μS
netric Cell)	0÷5,00 ppm (*)
. Dioxide	0÷0,50 /1,00 /2,00 /5,00 /10,0 /20,0 / 200,0 ppm
ostatic Cell)	
	with PT100/PT1000 0÷100°C (32÷212 °F)

scription

RS485 Serial port

For set-up and real-time data acquisition from remote or for stored data download on PC or laptop (Communication software **Sekonet** required).

MODBUS RTU communication protocol.

Measure Input

High measuring resolution with probe quality control.

Modular measuring system.

Chlorine measure in sea water application.

Digital Input

Double channel, Voltage Input and Reed level input to disable all function controller output.

Current outputs 4÷20mA Galvanic isolation

Two (2) programmable Output Measure.

Frequency Outputs

1÷120 Pulse/Minutes open collector Isolation channel.

Two (2) programmable Output Measure.

Relay Outputs

Three (3) independent relais, Three (3) set point measure with power contact.

One Alarm remote dry contact One Set point Measure dry contact.

On/OFF, Timed, Proportional routine function setting.

Product line Kontrol 800 Single parameter

Code	Model	Description
K800L01	Kontrol CL 800	for Amperometric Chlorine values
K800L06	Kontrol CL _P 800	for Free and Total Potentiostatic Chlorine values

Product line Kontrol 800 Double parameters

K800L02	Kontrol PR 800	for pH/ORP - pH/ORP values
K800L03	Kontrol PC 800	for pH/Amperometric Chlorine values
K800L04	Kontrol PRC 800	for pH/ORP - Amperometric Chlorine values
K800G04	Kontrol PRC 800	for pH/ORP - Amperometric Chlorine values
K800L05	Kontrol PR+EC 800	for pH/ORP - Conductivity values
K800L07	Kontrol PC _P 800	for pH + Potentiostatic Chlorine values
K800L08	Kontrol PRC _P 800	for pH /ORP + Potentiostatic Chlorine values
K800L09	Kontrol PRC _P +C _A 800	for pH/ORP + Pot. and Amperometric Chlorine values

Sensor Overview

pH/ORP

- For every application up to 130°C and 16 bar
- Virtually maintenance-free
- Highly accurate with pressurizable liquid electrolyte
- Open hole, pellon or ceramic diaphragms

Conductivity

- From ultrapure water to highly concentrated process media
- Cost-efficient for water / wastewater applications
- Inductive sensors for maintenance free applications

Chlorine

- Different membranes for selective measure of different Chlorine ions
- Only 30 seconds to achieve an accurate reading
- Reduced dependence on flow, substances and film-forming media
- Wide range of measure up to 200 ppm

	pH/OR	pH/ORP Sensors								Concuctivity Sensors					
Applications	SPH-1 5M	SPH-3 WW	SPH-4 HP	SPH-4 HT	SRH-1 5M	SRH-3 PT	SRH-4 HT-PT	C-K1 PT	С-ТК 1	с-тк 5	C-TK 10	с-тк 16	с-тк 0,1 РТ		
Waste Water		•	•	•		•	•	•	•	•	•	•	•		
Swimming Pool	•					•									
Drinking Water			•			•	•	•		•					
Cooling Tower			•			•	•				•				
Reverse Osmosis			•			•	•				•				
		Astrony and a set	A TRACT ACTUALINA		are.	And a state of the	A Realized sections								

Turbidity

11

Flov

Dissolved Oxigen

- Measure indipentend on variations in the optical properties of the media as turbidity
- Only few seconds to achieve an accurate measure
- Luminophore deposited directly to the glass to ensure a better mechanical adhesion

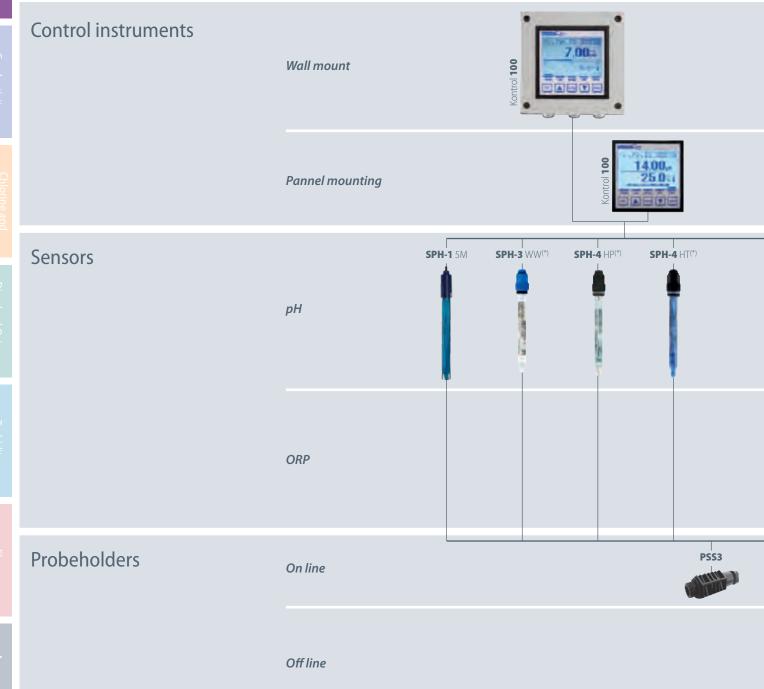
Turbidity

- Measurement is performed by using a 90° scattered light method compliant with ISO 7027 / EN 27027
- Medium is in direct contact with the sensors to make the unit virtually independent from humidity and condensate water
- No need to replace silica gel for easier and cheaper maintenance

Flow

- Low cost solution with high flow system accuracy
- No pressure drop making it ideal for gravity flows
- Reduced dependence on flow, substances and film-forming media
- Magmeter without moving parts for measurement of conductive and homogeneous dirty media

			Chlori	ne and d	isinfecta	nts Sens	ors	Oxigen Sensors	Oxigen Sensors Turbidity Sensors Flow Sensors							
			: Chlorine	hlorine		a	O2, O3				eel eel agnetic		agnetic	Conductivity		
С-ТК 10 РТ	S411 IND	S411 IND HT	Free Inorganic Chlorine	Free Organic Chlorine	Total Chlorine	Chlorine Dioxide	Bromine, PAA, H2O2, O3	S 423 C OPT	S 423 C OPT S 462 PVC		PVC paddlewheel	AISI paddlewheel	SFWE electromagnetic	Chlorine and disinfectants		
	•	•	•		•	•	•	•		•	•	•	•	S D		
			-	•	•	•			-			•		Disso		
•			•			•		•	-			•	F	Dissolved Oxigen		
			-		•				-			•		igen		
-			•			•			-		•					
Í		-		Î		Î	Î		S			6	Ţ.	Turbidity		
		4						E.			Ħ		T	Flow		
••					MOEN GROUP									Accessories		


Overview of **pH/ORP** Probes

pH measurement is based on the use of a pH sensitive glass electrode, a reference electrode and a temperature element to provide a temperature signal to the pH analyzer.

The pH electrode uses a specially formulated, pH sensitive glass in contact with the solution, which develops a potential proportional to the pH of the solution.

The reference electrode is designed to maintain a constant potential at any given temperature, and serves to complete the pH measuring circuit within the solution.

ORP (Redox) is a potentiometric measurement of the oxidizing/reducing power of a liquid.

An ORP measuring electrode is similar to a pH measuring electrode, except it is normally constructed of an noble metal (Platinum).

From a water treatment perspective, ORP measurements are used often to control disinfection with chlorine and chlorine dioxide

pH/Redox Probes

SPH-1 / SRH-1

Field Application:

- · General laboratory
- · Drinking Water
- · Swimming pools
- · Water monitoring and control plan

Features:

- · Low maintenance sealed unit
- · Gel filled reference cell
- \cdot BNC connection with Boot plastic Cover
- · Cable length 6 or 1,5 meter
- · Pellon Diaphragm high accuracy

SPH-3WW SRH-3 PT

Field Application:

- · Waste water
- · Drinking Water
- · Cooling Towers
- · Legionella disinfection
- · Galvanic Process

Features:

- · Low maintenance sealed unit
- · Gel filled reference cell
- · S8 connection with PG 13,5 mm
- · Glass Body
- · Diaphragm open hole

SPH-4 HP

Field Application:

- · Waste water
- · Drinking Water
- · Reverse Osmosis
- · Cleaning in place (CIP)
- · Galvanic Process

· S8 connection with PG 13,5 mm

· Glass Body for High Temperature

· Diaphragm 2 Sigle pore

Enviromental

SPH-4 HT SRH-4 HT-PT

Field Application:

- · Ammonia application
- · Chromium plating
- · Reverse Osmosis
- · Bisulphite application
- · Galvanic Process

Features:

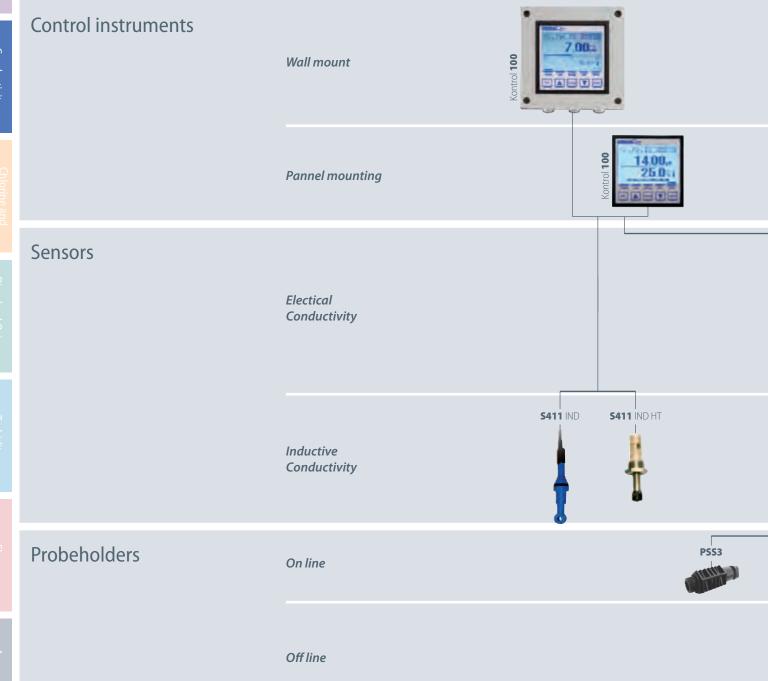
- · Low maintenance sealed unit
- · Gel filled reference cell
- · S8 connection with PG 13,5 mm
- · Glass Body for High Pressure Enviromental
- · Three ceramic diaphragm type

Measure range

Measurement range	Min. conductivity	Temperature range	Pressure range	Body material	Membrane material	Reference electrolyte	Diaphragm type	Electrical connection	Mechanical mounting
SPH-1	5M	Code 9900	105101					рH	P r o b e s
2÷12	50 µS/cm	0÷60°C	0÷4 bar	Ероху	Glass	GEL	1 Ceramic	5m cable + BNC	Standard Ø 12
SPH-3	ww	Code 9900	105005					рH	Probes
2÷12	5 μS/cm	0÷80°C	0÷6 bar	Glass	Glass	GEL	1 Open hole	S8	PG 13.5
SPH-4	HP	Code 9900	05006				7	рH	Probes
0÷14	5 μS/cm	0÷130°C	0÷6 bar	Glass	Glass	GEL	2 Single Pore	58	PG 13.5
SPH-4	нт	Code 9900	05007					рH	Probes
0÷14	5 μS/cm	0÷130°C at 6 bar	0÷16 bar at 25°C	Glass	Glass	GEL	3 Ceramic	58	PG 13.5
SRH-1-	5M	Code 9900	105100					Redox	Probes
±1000 mV	-	0÷60°C	0÷4 bar	Ероху	Platinum wire	GEL	1 Ceramic	5m cable + BNC	Standard Ø 12
SRH-3	РТ	Code 9900	105033					R e d o x	Probes
±2000 mV	-	0÷80°C	0÷6 bar	Glass	Platinum wire	GEL	1 Open hole	S8	PG 13.5
SRH-4	HT - PT	Code 9900	105034					Redox	
±2000 mV	-	0÷130°C at 6 bar	0÷16 bar at 25℃	Glass	Platinum wire	GEL	3 Ceramic	58	PG 13.5

pH/Redox Probes

*** S7 connection:** it is a electrical connection only


**** S8 connection:** S7 on the top electrical probe connection and PG 13.5 mm mechanical connection

Overview of Electrical Conductivity a

Conductivity is the ability of a solution to pass an electric current and tells us the amount of dissolved solids there is in a solution. It is usually measured by two different principles: conductive and inductive.

By the conductive principle, an alternating current is applied between the sensor poles the resulting current, that depends on the concentration of ions and on the length and area of the solution through which the current flows, is measured.

The current path is defined by the sensor geometry, or cell constant, which has units of 1/cm (length/area).Usually it is referred as K factor, that is the reciprocal of the cell constant.

Accessories

and Inductive Conductivity Probes

By the inductive principle, the field coil of the sensor is stimulated by a sinusoidal voltage. The current field in the fluid, that depends on its conductivity, generates a voltage in the receiver coil of the sensor.

The measure of this voltage and the cell constant give the right value of conductivity of the fluid.

Electrical Conductivity Probes

The range of conductivity probes is specially designed for use in industrial environments in conjunction with **seko** measurement instruments.

The various available models make it possible to cover an extremely wide measurement range.

There are versions with temperature sensors and special versions with graphite or platinum probes, PTFE cell bodies and IP67 connectors.

Note All the models are guaranteed for a

Max Pressure 6 bar

CT-K10

- Costant Cell: 0,1 cm⁻¹ or K=10
- Body material: PP (80°C)
- Electrodes material: Stainless steel 316L
- Mechanical Connection: ³/₄ Gas M PP

With temperature sensor (PT100)

Field Application:

- Waste Water - Drinking Water
- Cooling Towers
- Reverse Osmosis
- Irrigation

CT-K1

- Costant Cell: 0,1 cm⁻¹ or K=10
- Body material: PP (80°C)
- Electrodes material: Stainless steel 316L
- Mechanical Connection: ³/₄ Gas M PP

With temperature sensor (PT100)

Field Application:

CT-K5

- Costant Cell: 0,1 cm⁻¹ or K=10
- Body material: PP (80°C)
- Electrodes material: Stainless steel 316L
- Mechanical Connection: ³/₄ Gas M PP

With temperature sensor (PT100)

Field Application:

- Waste Water
 - Drinking Water
 - Cooling Towers
 - Boiler
 - Reverse Osmosis
 - CIP
 - Irrigation
 - Fish Farming
 - Dairy
- **CT-K 0.1- PT CT-K 10 - PT**

- Field Application: - Waste Water
- Drinking Water
- Cooling Towers
- Reverse Osmosis
- CIP
- Irrigation
- Fish Farming

Conductivity

- **C-K1 PT** • Costant Cell: 1 cm⁻¹ or K=1
- Body material: Glass (130°C)
- Electrodes material: Platinum
- Mechanical Connection: Ø12 mm

Without temperature sensor

CT-K1-G

- Costant Cell: 1 cm⁻¹ or K=1
- Body material: Epoxy 70°C
- Electrodes material: Graphite or Platinum

• Mechanical Connection: Ø12 mm

• Mechanical Connection: 34 Gas M PP

With temperature sensor (PT100)

- Waste Water
 - Drinking Water
 - Cooling Towers
 - Reverse Osmosis

Field Application:

- Waste Water - Drinking Water

- Irrigation

- Cooling Towers

- Reverse Osmosis

- Irrigation

Measure range

Measurement range	Constant [C-K]	Temperature range	Pressure range	Body material	Mounting Process	Cable
C-K1-PT	Code 9900101013			Without	temperat	ure Sensor
1÷20000µS	C=1 cm-1 K=1cm	120°C	6(*)	Glass - Platinum	Ø 12 mm	6 m
СТ-К10	Code 9900101103		(P T	100) With	temperat	ure Sensor
0,01÷500µS	C=0,1 cm-1 K=10cm	80°C	6(*)	PP-AISI 316	3/4" G.M.	Plug (**)
СТ-К5	Code 9900101102		(P T	100) With	temperat	ure Sensor
0,5÷2000µS	C=0,2 cm-1 K=5cm	80°C	6(*)	PP-AISI 316	3/4″ G.M.	Plug (**)
СТ-К1	Code 9900101101		(P T	100) With	temperat	ure Sensor
5÷5000µS	C=1 cm-1 K=1cm	80°C	6(*)	PP-AISI 316	3/4" G.M.	Plug (**)
CT-K1-G	Code 9900101124		(P T	100) With	temperat	ure Sensor
5÷20000µS	C=1 cm-1 K=1cm	70°C	7,5(*)	PVC Graphite	PG 13,5 mm	6 m
СТ-К10-РТ	Code 9900101190		(P T	100) With	temperat	ure Sensor
100÷200.000µS	C=0,1 cm-1 K=10cm	70°C	7,5(*)	Platinum	12 mm	6 m
СТ-К 0,1-РТ	Code 9900101191		(P T	100) With	temperat	ure Sensor
0,01÷ 500µS	C=10 cm-1 K=0,1cm	70°C	7,5(*)	Platinum	12 mm	6 m

Conductivity Probes

(*) The maximum pressure of 6 bars is guaranteed at 25 °C. As the temperature increases, the pressure decreases linearly and at 50° or 80 °C, the maximum pressure is 1 bar.

(**) To be used in conjunction with CC series cables.

Inductive Conductivity Probes

S411/IND

The inductive sensor has been engineered to produce a low cost sensor, without sacrificing performance or quality. The result has been obtained by moulding the sensor using polypropylene reinforced with fibreglass. The sensor provides all of the benefits that the method of inductive conductivity measurement provides.

Applications

Polluted surface waters, process monitoring, means very contaminated or aggressive, influ-ential water of treatment plants and wastewater.

Models

S411/IND sensor only

S411/IND/T for immersion

S411/IN/ E for insertion with T-fitting

S411/IND/INS for direct insertion on flat wall

S411/IND

Inductive Probes

Contact materials

Protection rating

Submersion length

Operating pressure Conductivity Range

Cable

Connection

Materials

Assembly

Resolution

Temp. compensation

Measure range

Operating temperature

S411/IND/INS

S411/IND/E

Inductive Probes

SENSOR S411/IND

-5 to 60 °C (without freezing)
Glass-reinforced polypropylene
PT1000 wires
Standard 5 metre
1/2" BSP male
IP68
PVC with Viton gaskets
600 or 1200 mm
Standard bracket or optional flange
From vacuum to 6.5 bar (100 psi)
1000 µS to 1 Simens
100 μS to 1000 μS

Code 6100011441

S411/IND/HT

These sensors are manufactured of PEEK[™], a food grade material with excellent aggressive chemical resistance and high temperature performance. The construction allows the sensors to operate at 100°C continuously, withstanding thermal shocks commonly associated with CIP applications. The sensors can be sterilized at up to 135°C.

Applications

- Ideal for food and process applications
- Conductivity and concentration measurements
- Wide range of process connections

Models

S411/IND/HT for insertion

S411/IND/HT60/120 for immersion

S411/IND/HT TP for By-pass with PVC T-fitting

S411/IND/HT/TP for By-pass with SS T-fitting

S411/IND/HT

Inductive Probes
Operating temperature
Contact materials
Temp. compensation
Cable
Connection
Protection rating
Materials
Submersion length
Submersion length Assembly
-
Assembly

S411/IND/HT TP

S411/IND/HT/TS

Measure range Inductive Probes

SENSOR S411/IND/HT

- 5 to 100°C – up to	135°C for short pe	eriods (CIP process)
----------------------	--------------------	----------------------

Body PEEK – Temperature sensor INOX (PEEK on request)

Temperature sensor Pt1000 with 2 wires

Disconnectable Standard 5 meters

RJT 2", 2.5", 3" – **Tri clamp** 2", 3" – **IDF/ISS** 2", 2.5", 3" DIN 1185: 50mm, 80mm (oher on request)

IP67

PEEK / AISI

600 or 1200 mm

Standard bracket or optional flange

Vacuum to 10 bar (150 psi)

1000 µS to 1 Simens

100 µS to 1000 µS

Code **XXXXXXXXXXXXXX**

S411/IND/HT

60/120

Overview of Chlorine and disinfectar

The standard amperometric sensor design consists of two electrodes (anode and cathode) that measure a change in current caused by the chemical reduction of hypochlorous acid at the cathode.

The current that flows because of this reduction is proportional to the chlorine concentration.

Seko electrodes are covered with a selective membrane and submerged in an electrolyte to keep the measurement environment protected and constant, providing for better precision of the analysis of diverse disinfectants.

nts Probes

6.99.

Total Chlorine^(*)

control 50

Chlorine **Dioxide**(*)

ontrol 50

The free chlorine amperometric sensor works according to the principle of depolarization of a galvanic element.

The sensor contains a platinum and a copper electrode. With the sample water acting as the electrolyte, galvanic potential develops between the two electrodes.

Kontrol 800

Bromine, PAA, H₂O₂, O₃^(*)

With stable conditions of pH and water flow, the sensor current increases proportionally to the free chlorine content.

^(*) Cable not included

PSS PLEXI

Amperometric Cell

Chlorine and disinfectants Probes

CLPROBES

This range consists of potentiostatic amperometric probes to measure free or total chlorine for applications such as: water treatment, swimming pools, industrial applications and more.

The wide range of probes allows a better choice depending on the parameter to be tested, thus obtaining a more accurate measurement.

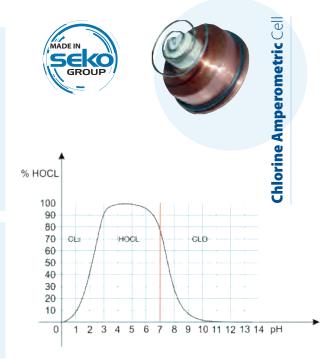
• The two-wire interface allows quick and easy installation.

High pressure Probe sensors

Measure range

Models	F-CL 1	F-CL 2	F-CL 3	F-CL 4	F-CL 5	F-CL 6	F-CL 7	F-CL 8	F-CL 9	F-CL 10	F-CL 11	
Measure range		0÷10 ppm 0÷2 ppi				0÷1 ppm	0÷5 ppm	0÷1 ppm	0÷5 ppm	0÷0,5 ppm	0÷5 ppm	
pH range	4÷8 pH	4÷12 pH	4÷11 pH	4÷11 pH 4÷8 pH			5÷9 pH				4÷8 pH	
Response time			1	minutes - 90)% of measu	re (100% of measure after 15 minutes)						
Flow rate			30 L/h				80	L/h		30	L/h	
Temperature	45 °C						°C	70	°C	45	°C	
Pressure	1 bar	1 bar 0,5 bar 5 bar (*) 8 bar (*)						0,5 bar	1 bar			
Sensor material	Silver chlorine with gold					Gold				Silver chlorine with gold		
Membrane	M20	M48	M48 G	M20	M20	- 🦉			M20	M20		
Electrolyte	ECL1	ECC1	ECS1 Gel	ECL1	ECL1		EAS	1 Gel		ECL1	ECL1	
Electrical connection					Wire co	onnection wit	h screw					
Mechanical mounting						Ø 24mm						
Application fields	Inorganic Free Chlorine	Organic Free Chlorine				Inorganic Free Chlorine						
	Code 9900101140	Code 9900101141	Code 9900101142	Code 9900101146	Code 9900101148	Code 9900101149	Code 9900101150	Code 9900101152	Code 9900101153	Code 9900101159	Code 9900101173	
A with Coop Ding												

F-CL 2 • F-CL 3 • T-CL 1 can be used in sea water application with special electrolites


Chlorine Amperometric Cell

For the disinfection of any type of water, preference is given to chlorine gas or chlorine compounds. The germicidal effect is due to the formation of Hypochloric acid (HCIO) if chlorine is dissolved in water.

The formation of Hypochloric acid depends strongly on the pH value consequently a constant pH value of the water is suggested (preferably pH 7.00 or less).

Otherwise the same chlorine concentration would cause different indications.

Range	0.00 ÷5.00 ppm
Accurancy	± 0.1 ppm
Pressure	6 bar
Temperature	0 ÷ 60 °C
рН	6.5 ÷ 8.2

F-CL12	F-CL13	T-CL 1	T-CL 2	D-CL	D-CL 2	D-CL 3	PAA 1	PAA 1 H ₂ 0 ₂ 1 H ₂ 0		0 ₃ 1	0 ₃ 2	BR 1	
0÷ pp		0÷10 ppm	0÷5 ppm	0÷10 ppm	0÷1 ppm		0÷2000 ppm	0÷200 ppm	0÷500 ppm	0÷2 ppm	0÷5 ppm	0.05÷10 ppm	
4÷12 pH	4÷11 pH	4÷1	4 pH	1÷14 pH	5÷9	∂рН		2÷11 pH		1÷1	6.5÷9.5 pH		
			1	minutes - 90	% of measu	o of measure (100% of measure after 15 minutes)							
		30 L/h			80	L/h			30	L/h			
		45 °C			50 °C	70 °C			45	°C			
	0,5	bar		1 bar	5 bar (*)	8 bar (*)	1 bar	1 bar 5 bar (*) 1 bar			bar	0,5 bar	
	Silver	chlorine wit	h gold		Gold Silver chlorine with gold								
M48	M48 G	M48	M48	M20		- 🧃 M7N		M20	M20	M48			
ECC1	ECS1 Gel	Gel ECP1	Gel ECP1	EDC41	EAS	1 Gel		EPS7/W		EOZ1		EBR1 Gel	
					Wire co	nnection wit	h screw						
						Ø 24mm							
Organic Free Chlorine	Inorganic Free Chlorine	Total C	hlorine	Cł	nlorine Dioxid	de	Peracetic Acid	Hydrogen Perovide		Ozone		Bromine	
Code 9900101174	Code 9900101177	Code 9900101143	Code 9900101172	Code 9900101144	Code 9900101151	Code 9900101154	Code 9900101157	Code Code Code Code Code 9900101157 9900101158 9900101156 9900101175 99001011				Code 9900101179	
								atic	Chl	orir	D Pr		

Overview

The S423/C OPT is an oxygen sensor based on luminescent optical technology.

This technique is based on a diode that emits a blue light towards a support on which a fluorescent substrate is applied.

The substrate reacts by emitting initially a red light (luminescence), then returns to its initial state.

The intensity of the produced red light and the return rate to the initial state are related to the present oxygen concentration

27

seko > water & industry > control and measuring instruments

Dissolved Oxigen Probes

S423/C OPT

The S423/C OPT sensor with an integrated temperature sensor is based on luminescent optical technology. Without calibration requirements and thanks to an ultra low power technology, the S423/C OPT sensor meets the demands of field works and short or long term campaigns. Without oxygen consumption, this technology allows you an accurate measure in all situation and especially in very low oxygen concentrations.

The S423/C OPT sensor stores calibration and history data within the sensor. This allows you a "plug and play" system without recalibration. Thanks to the Universal Modbus RS485 protocol, The S423/C OPT sensor can be connected to all devices commonly used (Datalogger, Controller, Automat, Remote System...).

Applications

Fish farms, drinking water, waste water, sea water

Measure range

Models
Measuring range
Measuring method
Precision
Response time
Required flow rate
Temperature sensor
Temperature range
Pressure range
Body material
Electrode material
Membrane material
Reference electrolyte
O-Rings
Electrical connector
Connection to process
Polarisation current
Signal interface

S423/C OPT PVC (35mm)
0.00 to 20.00 mg/L 0-200%
Optical measure by luminescence
±0.1mg/L or ±1 %
90% of the value in less than 60 s
No necessary move
NTC
-10 \div 60°C (optional -10 \div 80°C)
5 bar
PVC
Special optical glasses
No membrane
No electrolyte
NBR and Silicon
Integral cable 10 mt with the sensor
35mm
5 to 12 volts
4÷20 mA Output
Code 9900105102 35mm

Overview

Turbidity is the cloudiness of a fluid caused by large numbers of individual particles

Turbidity sensors measure the scattered component of a light beam which is diverted away from its natural course by optically denser particles in the medium according to the Tyndall effect.

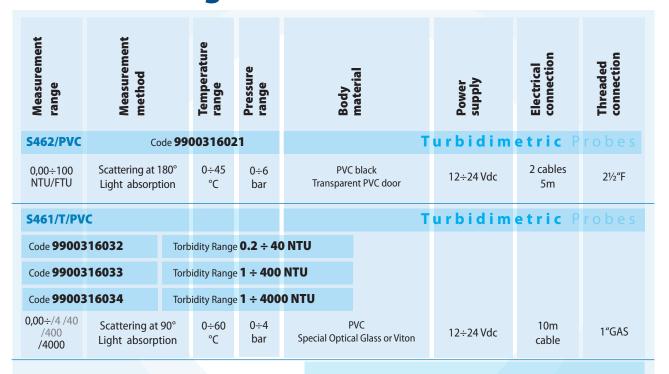
The turbidity of the medium is determined by the amount of scattered light.

In S462/T the measurement is performed by using a 90° scattered light method compliant with ISO 7027 / EN 27027.

In S462/PVC sensor the measurement is performed by using a 180° scattered light method.

The measure is virtually indipentend on variations in the optical properties of the sample (turbidity, refractive, index and coloration).

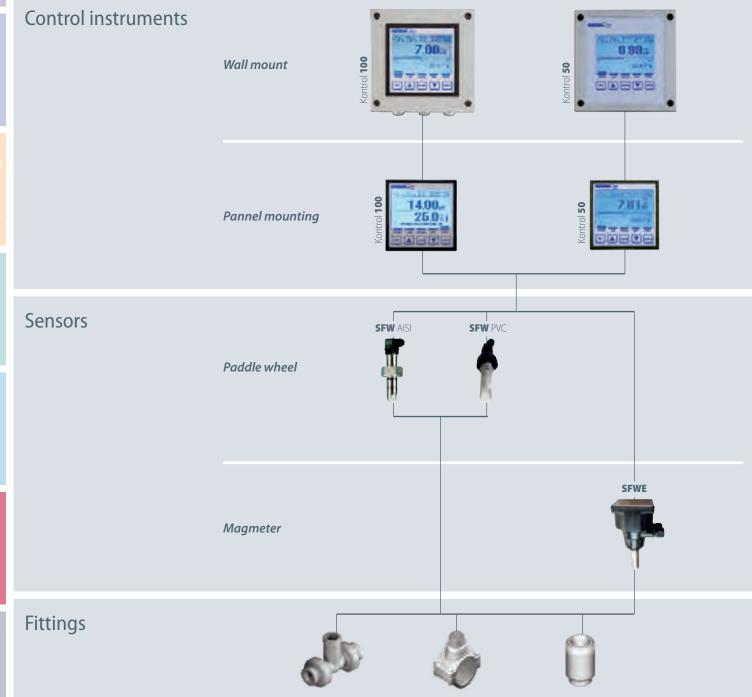
Turbidimetric Probes


Features and Benefits

- Reliable concentration measurement using optical measuring process
- Infrared light pulsing beams scattering method
- Black rigid PVC sensor body
- No mechanically moving parts
- Measured value pre-processing in sensor resulting in low signal transmission sensitivity

Μ	eası	ire	ran	de

Turbidimetric probes


Overview

The paddle wheel sensor consists of a freely rotating wheel with magnets which is perpendicular to the flow.

As the magnets in the blades spin past the Hall sensor, a frequency and voltage signal which is proportional to the flow rate is generated.

In the SFWE magmeter the physical principle at work is electromagnetic induction. According to Faraday's Law, the voltage induced by the magmeter is proportional to the velocity of the conductor fluid.

It requires a conducting fluid and an electrical insulating pipe surface.

Flow Sensor

SFW

The paddlewheel flow sensor SFW is designed to be used with every kind of solid-free liquid. The sensor can measure flow from 0.15 m/s (0.5 ft/s) producing a frequency output signal highly repeatable.

A new electronic, with a pushpull output, is now available for a safe connection to any kind of PLC/instrument digital input.

A special family of fittings ensures installation into all pipe material in sizes from DN15 to DN600 (0.5" to 24").

SFWE

The SFWE insertion magmeters can measure flow rate in both metal and plastic pipes.

No moving parts allow the measurement of liquids with suspended solids as long as conductive and homogeneous.

The sensors can be assembled into the standard FLS fittings for installation from DN15 to DN600 (0.5" to 24").


They offer frequency output to use with FLS flow instrumentation and 4-20 mA output for long distance transmission and PLC connection.

Special versions for salt-water applications (high concentration of chlorides as sea water) and for high temperature conditions.

Measure range

measure range								
Flow Sensor	SFW			SFWE				
Working range	0.15 to 8m/s [0.5 to 25ft/s]				0.15 to 8m/s [0.5 to 25ft/s]		5ft/s]	
Minimum reynolds			4500				-	
Linearity		±0.75%	% of full so	ale		$\pm 1\%$ of reading +1.0 cm/s		cm/s
Repeatability		±0.5%	6 of full sc	ale		:	±0.5% of reading	1
Maximum process Pressure/Temperature	PVC-C body: 10 bar - 25°C 1.5 bar - 80°C	10 b	/DF body: oar - 25°(oar - 100°(25 b	ar - 120°C ar - 100°C	16 bar - 25°C 8.6 bar - 70°C		
Materials	CPVC or PVDF E	rings: PDM FPM		Shaft: Ceramic (Al ₂ O ₃)	Bearings: Ceramic (Al ₂ O ₃)	Sensorbody: 316L SS PVDF	O-rings: EPDM or FPM	Electrodes: 316L SS
Outputs	Square wave, frequency: 45 Hz per m/s [13.7 Hz per ft/s] nominal 4÷20 mA with K330 output kit mounted				lated Square wave, free collector: flow dire			
Power supply	5 to 24 VDC \pm 10% regulated					$4 \text{ VDC} \pm 10\% \text{ reg}$ ity and short circ		
Application fields	Water and industrial waste water treatment, water distribution, processing and manufacturing industry, textile finishing, chemical production, cooling and Heating systems, swimming pools and Spas.				ning, chemical	water distribution, to	ter treatment, raw wa extile industry, swimn ocessing and manufac	ning pools, Spas and
	Code 990031701X PVC SFW1 / SFW2 Code 990031704X Stainless Steel SFW1 / SFW2			Code 99003170 Code 99003170				
				51 112		•• Mug 51 WZ		

Probeholders

PSS-PLEXI Features

- In/Out: 8x12 mm (tube)
- Material Plexiglas without color
- Hydraulic **By Pass**
- Pressure **5 bar**
- Temperature **60°C**

Code 9900103047 PSS-PLEXI [FLUX/PH] Code 9900103048 PSS-PLEXI [FLUX/PH/RX] Code 9900103049 PSS-PLEXI [FLUX/CL-A] Code 9900103050 PSS-PLEXI [FLUX/PH/CL-A] Code 9900103051 PSS-PLEXI [FLUX/PH/RX/CL-A] Code **9900103052** PSS-PLEXI [FLUX/PH/CL-P] Code 9900103053 PSS-PLEXI [FLUX/CL-P] Code 9900103054 PSS-PLEXI [FLUX/PH/RX/CL-P] Code 9900103055 PSS-PLEXI [FLUX/PH/RX/CL-A/CL-P] Code **9900103056** PSS-PLEXI [FLUX/CL-P/CL-P]

PSS Pressurized probe holder

Pressurised probe holders are used to immerse the probe directly into the pipe where the sample to be measured passes. The probe must always be positioned vertically or slanting in the direction of the flow at a maximum of 45°. The probe holder connection line must be fitted between two isolation valves (input and output) in order to permit the prevention of the flow during maintenance of the probes.

Connection to the process	Mechanical Connection	Max Temperature	Max Pressure	Material
PSS 3	Code 990010667	0		
1/2″G.M.	PG 13,5 or Ø 12 mm	60°C	7 bar	PVC

PSS-EC Outflow probe holder

Outflow probe holders for conductivity probes

Bypass probe holder for conductivity probe model CTK1, 5 and 10 Made of black PVC with 3/4" mechanical connection and 1" GAS **IN/OUT hydraulics. OUTFLOW SECTION**

(PSS-COND-T)

Code **0000126035**

Probeholders and Power Supply

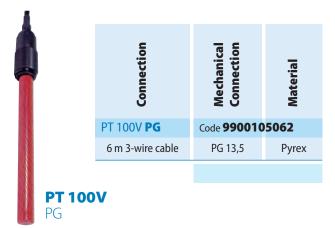
Power Supply

External power supply DIN RAIL mounting for Oxigen and Turbidity sensors.

Features

- Output 24Vdc 10W (Input 100÷240Vac)
- NEC class 2 / LPS compliant
- Protections: Short circuit / Overload / Over voltage

Temperature sensor, cables, buffer solutions


PT100

Temperature sensor

In order to correctly measure the pH in environments with variable temperatures, it is necessary to correct the response error of the probe resulting from temperature change.

The measuring instrument must therefore be connected to a special temperature sensor.

Max Pressure 7 bar

CE Probe cables with S7 heads

Length	Type of Cable	Terminal block				
CE 1/B	Code CE B 990010	9001				
1 mt.	Mod. RG58 5 mm	Crimping BNC - Soldered BNC				
CE 5/B	Code CE B 990010	Code CE B 9900109003				
5 mt.	Mod. RG58 5 mm	Crimping BNC - Soldered BNC				
CE 10/B	Code CE B 990010	9004				
10 mt.	Mod. RG58 5 mm	Crimping BNC - Soldered BNC				
CE 20/B	Code CE B 9900109006					
20 mt.	Mod. RG58 5 mm	Crimping BNC - Soldered BNC				

Length	Version	No. poles
CC 5	Code 99001101	1
5 mt.	standard	4
CC 10	Code 99001101	2
10 mt.	standard	4
CC 15	Code 99001101	3
15 mt.	standard	4

ST Buffer solution

Certified buffer solutions

The precision and reliability of a pH, Redox or Conductivity measurement is determined by the buffer solution used for calibrating the probe. The special double-plug container ensures that a new unpolluted buffer is always available.

Solution	Value	Quantity
ST PH 4	Code 9900122007	
рН	4,00 pH 20 °C	250 ml
ST PH 7	Code 9900122008	
рН	7,00 pH 20 °C	250 ml
ST PH 9	Code 9900122009	
рН	9,22 pH 20 °C	250 ml
ST RX 465	Code 9900122010	
Redox	465 mV 25 ℃	250 ml
ST MS 8	Code 9900122018	
Conductivity	84 μS/cm 25°C	500 ml
ST MS 14	Code 9900122019	
Conductivity	1423 μS/cm 25°C	500 ml
ST MS 128	Code 9900122020	
Conductivity	12880 μS/cm 25°C	500 ml